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Numerical Problems 2

inputs
initial data

y

 ⇒


outputs
solution
x

• Equations

F (y, x) = 0

F is the residual function.

• Solution function

f(y) = x



Two Perturbational Questions 3

F (y0, x0) = 0

F (y0 + ∆y︸ ︷︷ ︸
y′

, x0 + ∆x︸ ︷︷ ︸
x̄

) = 0

1. Is the solution mathematically stable?

‖∆x‖ ≤ χ ‖∆y‖ + o(‖∆y‖)

χmin = ‖Df(x0)‖

2. Inverse Problem. What size of ∆y is
needed to accomodate an x̄?



Two Solutions of the Inverse Problem 4

A. A priori inverse rounding error analysis:
for any x̄, construct a ∆y and bound it.

‖∆y‖ ≤ bound on backward errors

B. A posteriori analysis

µ(x̄) =


minimal
optimal
smallest


size of
backward
errors

= min
{y′ : F (y′, x̄) = 0}

‖y′ − y0‖



Examples of Minimal Size, µ(x̄) = 5

Linear Equations, A0x = b0 [Oettli and Prager, 64]

min
∆A, ∆b

max
i, j, k

 ˛̨̨̨
∆Ai,j

Ei,j

˛̨̨̨
,

˛̨̨̨
∆bk

fk

˛̨̨̨ ff
= max

j

˛̨̨̨
(A0 x̄ − b0)j

(|E| |x̄| + |f |)j

˛̨̨̨

Linear Equations, A0x = b [Rigal and Gaches, 67]

min
∆A

‖∆A‖ =
‖r̄‖
‖x̄‖ where r̄ = A0x̄ − b

Linear Least Squares [Waldén, Karlson, Sun, 95]

min
∆A

‖∆A‖F =

s
‖r̄‖2

2

‖x̄‖2
2

+ min
i


0, λi

„
A0At

0 − r̄ r̄ t

‖x̄‖2
2

«ff



Minimal Backward Error Bibliography 6

linear
equations

various
factorizations

linear least
squares

invariant
subspaces

1964 Oettli, Prager structured LE
1967 Rigal, Gaches LE
1989 Bunch, Demmel, Van Loan symmetric LE
1991 Sun Choleski and QR
1992 Bartels, Higham Vandermonde LE

Higham, Higham Toeplitz LE
Higham, Higham multiple right side LE

1993 Sun characteristic subspaces
1994 Chandrasekaran, Ipsen sym. eigen decomp.

Varah Toeplitz LE
1995 Smoktunowicz symmetric structured LE

Smoktunowicz eigenvalue and vector
Sun sym. eigen decomp.
Waldén, Karlson, Sun LLS

1996 Higham alt. expression for LLS
Sun multiple right side LLS

1997 Karlson, Waldén estimate for LLS
Sun, Sun underdetermined LE
Sun min. norm sltn. for LLS

1998 Frayssé, Toumazou eigenvalue and vector
Higham, Higham eigenvalue and vector
Sun Vandermonde LE

1999 Cox, Higham linearly constrained LLS
Gu estimate for LLS

2001 Malyshev spherically constrained LLS
2002 Malyshev, Sadkane evaluation for sparse LLS

Stewart Krylov subspaces



Uses for Minimal Size of Backward Errors 7

1. Accuracy criterion. [von Neumann, 47]
If the initial data have error ≥ µ(x̄),
then x̄ solves the problem,
to the extent the problem is known.

2. Backward stability estimation.
An x̄ with a small µ(x̄) is backward
stable.

3. Test new algorithms.
Explore backward stability without having
to do an inverse rounding error analysis.



Summary of Pertubation Analyses in NA 8

1. Forward Type 2. Inverse Type

A.
Inverse

Rounding
Error

Analysis

B.
Mathematical

Analysis

Find χ(y0), the
condition number.

χmin = ‖Df(y0)‖

Construct
some

backward
errors.

Find µ(x̄), the
minimal size of
backward error.

µ(x̄) = ?



Outline 9
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Metric Projection 10

PS(y0) = a point in set S nearest to y0

dist(y0, S) = distance from y0 to S



Metric Projection 11

Minimal size of backward error is

µ(x̄) = dist(y0, {y′ : F (y′, x̄) = 0}︸ ︷︷ ︸
S(x̄)

all data compatible with x̄

)



Metric Projection 12

Minimal size of backward error is

µ(x̄) = dist(y0, {y′ : F (y′, x̄) = 0}︸ ︷︷ ︸
S(x̄)

all data compatible with x̄

)



Metric Projection 13

PS(y0)

point y0 set S(x0)

Minimal size of backward error is

µ(x̄) = dist(y0, {y′ : F (y′, x̄) = 0}︸ ︷︷ ︸
S(x0)

all data compatible with x0

)



Metric Projection 14

PS(y0)

point y0 set S(x)_

Minimal size of backward error is

µ(x̄) = dist(y0, {y′ : F (y′, x̄) = 0}︸ ︷︷ ︸
S(x̄)

all data compatible with x̄

)



Summary of Abstract Formulation 15

Minimal size of backward error is a distance

µ(x̄) = min
y′ ∈ S(x̄)

‖y′ − y0‖

S(x̄) = {y′ : F (y′, x̄) = 0}

? The set S(x̄) is subject to change.

? The point y0 is not subject to change.

? x̄ ≈ x0, which places S(x̄) near y0.

? The true solution x0 is unknown.
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1. Prior Work in Pure Math 17

Differentiation with respect to y0 (not S) for8<: dist(y0, S)

PS(y0)

9=; ×

8<: y0 ∈ S

y0 6∈ S

9=; ×

8<: convex S

unconvex

9=; × · · ·

8<: Hilbert space

Banach space

9=; ×

8<: finite dimensional

∞ dimensional space

9=; = 25

? Basic negative result: PS(y0) need not
be directionally differentiable everywhere
in E2 for convex S.

— [Kruskal, 69] [Shapiro, 94]



1. Prior Work in Pure Math 18
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9=; ×
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9=; = 25
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be directionally differentiable everywhere
in E2 for convex S.

— [Kruskal, 69] [Shapiro, 94]



1. Prior Work in Pure Math 19

Differentiation with respect to y0 (not S) for8<: dist(y0, S)

PS(y0)

9=; ×

8<: y0 ∈ S

y0 6∈ S

9=; ×

8<: convex S

unconvex

9=; × · · ·

8<: Hilbert space

Banach space

9=; ×

8<: finite dimensional

∞ dimensional space

9=; = 25

? Basic positive result: PS(y0) is
directionally differentiable everywhere at
boundary of convex S in Hilbert spaces.

— [Zarantonello, 71]



Differentiation with respect to y0 20

1. Differentiability at internal points y0 ∈ bd(S):

(a) Convex S:
Hilbert spaces: PS(y0) is directionally differentiable always.

[Zarantonello, 71]

(b) Arbitrary S:
Finite dimensional Banach spaces: y0 and S have been

characterized for which PS(y0) is directionally differentiable
[Shapiro, 87]

2. Differentiability at external points y0 /∈ S:

(a) Convex S:
Banach spaces: dist(y0, S) is continuously differentiable in

spaces with differentiable norms [Holmes, 73]

(b) Arbitrary S:
Hilbert spaces: sets have been classified that have uniform

envelopes where dist(y0, S) is continuously differentiable
[Clarke et al., 95]



2. Prior Work in Optimization Theory 21

φ(x) = min
y : G(y, x) ∈ K

g(y, x)

“It is difficult to investigate the sensitivity of an optimal
value whose feasible set is subject to change . . . ”

[Bonnans and Shapiro, 98, 00]

Used for:

• sensitivity analysis [Fiacco and Ghaemi, 82]

• finding optimality conditions

• establishing the convergence of algorithms



2. Results from Optimization Theory 22

Theory assumes continuous 2nd derivatives
for both constraint and objective functions.

? In Hilbert spaces [B&S, 00]

lim
t → 0+

µ(x0 + t∆x)

t
= min

∆y : J1∆y + J2∆x = 0
‖∆y‖2

• If F has continuous second derivatives,

• [J1, J2] = DF (y0, x0) has full row rank.



First Order Approximation to µ(x̄) 23

Use the result of B&S to estimate

µ(x̄) = min
{y′ : F (y′, x̄) = 0}

‖y′ − y0‖2

The directional derivative gives to 1st order

µ(x0 + ∆x) = min
∆y : J1∆y + J2∆x = 0

‖∆y‖2 + O(‖∆x‖2)

where [J1, J2] = DF (y0, x0).



The Differential Linearizes the Constraint 24

Use the result of B&S to estimate

µ(x̄) = min
{y′ : F (y′, x̄) = 0}

‖y′ − y0‖2

The directional derivative gives to 1st order

µ(x0 + ∆x) = min
∆y : J1∆y + J2∆x = 0

‖∆y‖2 + O(‖∆x‖2)

where [J1, J2] = DF (y0, x0).



Drawback: Only 2-Norm Backward Error 25

Use the result of B&S to estimate

µ(x̄) = min
{y′ : F (y′, x̄) = 0}

‖y′ − y0‖2

The directional derivative gives to 1st order

µ(x0 + ∆x) = min
∆y : J1∆y + J2∆x = 0

‖∆y‖2 + O(‖∆x‖2)

where [J1, J2] = DF (y0, x0).



Drawback: Remainder not Proved Uniform 26

Use the result of B&S to estimate

µ(x̄) = min
{y′ : F (y′, x̄) = 0}

‖y′ − y0‖2

The directional derivative gives to 1st order

µ(x0 + ∆x) = min
∆y : J1∆y + J2∆x = 0

‖∆y‖2 + O(‖∆x‖2)

where [J1, J2] = DF (y0, x0).



Show Stopper: Requires x0 and ∆x 27

Use the result of B&S to estimate

µ(x̄) = min
{y′ : F (y′, x̄) = 0}

‖y′ − y0‖2

The directional derivative gives to 1st order

µ(x0 + ∆x) = min
∆y : J1∆y + J2∆x = 0

‖∆y‖2 + O(‖∆x‖2)

where [J1, J2] = DF (y0, x0).



Summary of Prior Work 28

Regarding (Directional) Derivatives of µ . . .

1. Pure Math

Only perturbs y0 — inapplicable to varying S.

2. Optimization Theory

Studies perturbations to S. X
• Shows derivative linearizes the constraint.

• Requires 2nd order differentiability. :-(
– So only for 2-norm — drawback.

• Remainder not uniform in direction — serious.

• Formula needs ∆x & x0 — show stopper.
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How to Estimate µ(x̄)? 30



How to Estimate µ(x̄)? 31



How to Estimate µ(x̄)? 32



Asymptotic Approximation 33

If real-valued functions f and g satisfy

lim
x → x0

f(x)

g(x)
= 1

then f ∼ g at x0

f asymptotically approximates g, or

f and g are asymptotically equivalent.

I.e., ∀ ε > 0 ∃ δ > 0 so that ‖x − x0‖ < δ ⇒

(1 − ε) g(x) ≤ f(x) ≤ (1 + ε) g(x)



Asymptotic Implies Differential 34

If functions f and g satisfy

D(f − g)(x0) = 0

then at x0

f differentially approximates g, or

f and g are differentially equivalent.

? If f , g are asymptotically equivalent at x0 and if
one of f or g is Lipshitz continuous at x0,
then they are differentially equivalent.



3 Linearizations May Estimate µ(x̄) 35

In the minimal size of backward error

µ(x̄) = min
{y′ : F (y′, x̄) = 0}

‖y′ − y0‖

there are many ways to approximate the constraint

F (y′, x̄) = 0

1. D1F (y0, x̄ ) ∆y + F (y0, x̄) = 0

2. D1F (y0, x0) ∆y + F (y0, x̄) = 0

3. D1F (y0, x0) ∆y + D2F (y0, x0) ∆x = 0



Perturbation Theorem 36

Theorem: For residual function F and data y0,

1. if F is continuously Fréchet differentiable,

2. if there is a solution x0, i.e. F (y0, x0) = 0

3. if D1F (y0, x0) has full row rank, then

then the minimal size of the backward error

µ(x̄) = min
y′ : F (y′, x̄) = 0

‖y′ − y0‖

is asymptotically estimated by replacing the
constraint with the first 2 approximations.



Dual of a Linearly Constrained Problem 37

If L : Rm → Rp maps one space onto another, then

min
u : Lu = h

‖u‖ = max
g ∈ (Rp)∗

g(h)

‖L∗g‖∗ = ‖h‖L

For full row rank matrices J and 2-norms,

min
u : Ju = h

‖u‖2 = max
g

gth

‖Jtg‖2

= ‖J†h‖2



Theorem’s 1st Estimate is Computable 38

h = F (y0, x̄) is the residual of the problem

J = D1F (y0, x̄) Jacobian of residual w.r.t. data

µ(1)(x̄) ∼ min
∆y : J ∆y = h

‖∆y‖

if 2 norms︷ ︸︸ ︷
= ‖J†h‖2

? Nothings depends on, x0, the true solution.

? The estimate can be evaluated.



Theorem’s 2nd Estimate is Canonical 39

h = F (y0, x̄) is the residual of the problem

J = D1F (y0, x0) Jacobian of residual w.r.t. data

µ(2)(x̄) ∼ max
g

gth

‖Jtg‖∗ = ‖h‖J

if 2 norms︷ ︸︸ ︷
= ‖J†h‖2

? The minimal size of the backward error is
asymptotically a norm of the residual.

? The norm is unique.



Summary of Asymptotic Theory 40

Linearized equations give asymptotic estimates for
the minimal size (in any norm) of the backward error
of numerical problem.

1st estimate can be computed for 2-norms by solving
a large, sparse LLS problem.

2nd estimate shows the minimal size of the backward
error is uniquely determined as a norm of the
equations’ residual.
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x0 = arg minx ‖b − A0x‖2 42

Find easily computable statistics that are both
necessary and sufficient for the stability of a least
squares solution. — [Stewart (and Wilkinson), 77]

Exactly minimal size — [Waldén, Karlson, Sun, 95]

µ(x̄) = min
∆A

‖∆A‖F =

=

√
‖r̄‖2

2

‖x̄‖2
2

+ min
i

{
0, λi

(
A0At

0 −
r̄ r̄ t

‖x̄‖2
2

)}
where r̄ = b − A0x̄



Step 1: Check the Theorem’s Hypotheses 43

1. Continuously differentiable equations

F (A, x) = At(b − Ax)

2. Any A0 has at least one solution, x0

3. J = D1F (A0, x0) =[
e1rt

0 e2rt
0 · · · enrt

0

]
−

[
x1At

0 x2At
0 · · · xnAt

0

]
where r0 = b − A0x0 is the true residual.
Since At

0r0 = 0,

JJt = ‖r0‖2
2 I + ‖x0‖2

2 At
0A0

so J has full row rank provided r0 6= 0.



Step 2: Form the 2nd Estimate 44

The 2nd asymptotic estimate is

µ(2)(x̄) = ‖ J† F (A0, x̄) ‖2

= ‖ (JJt)−1/2 At
0r̄ ‖2

= ‖
(
‖r0‖2

2 I + ‖x0‖2
2 At

0A0

)−1/2
At

0 r̄ ‖2

where

r0 = b − A0x0 true least squares residual

r̄ = b − A0x̄ residual of computed x̄



Step 3: Replace x0 → x̄ 45

µ(2)(x̄) = ‖
(
‖r0‖2

2 I + ‖x0‖2
2 At

0A0

)−1/2
At

0 r̄ ‖2

µ̃(x̄) = ‖
(
‖r̄‖2

2 I + ‖x̄‖2
2 At

0A0

)−1/2
At

0 r̄ ‖2

This too is asymptotic

lim
x̄→x0

µ̃(x̄)

µ(x̄)
= lim

x̄→x0

µ̃(x̄)

µ(2)(x̄)

µ(2)(x̄)

µ(x̄)
= 1

For comparison, the exact value is

µ(x̄) =

√
‖r̄‖2

2

‖x̄‖2
2

+ min
{
0, λmin

(
A0At

0 −
r̄ r̄ t

‖x̄‖2
2

)}



µ̃(x̄) Has Appeared Before 46

Both Kalson and Waldén, and Gu used formulas
equivalent to µ̃(x̄) to derive other bounds on µ(x̄).
Their intermediate results include

• [Karlson and Waldén, 97]

µ̃(x̄)

µ(x̄)
≤

2 +
√

2

2
≈ 1.707

• when A0 has full column rank [Gu, 99]

1 ≈
‖r0‖2

‖r̄‖2

≤
µ̃(x̄)

µ(x̄)
≤

√
5 + 1

2
≈ 1.618

• so roughly µ(x̄) ≤ µ̃(x̄) ≤ 2 µ(x̄)



Summary of Application to LLS 47

• The perturbation theorem can be used to easily
derive computable asymptotic estimates for the
minimal size of the the backward error of LLS,

µ̃(x̄) = ‖
(
‖r̄‖2

2 I + ‖x̄‖2
2 At

0A0

)−1/2
At

0 r̄ ‖2

provided r0 6= 0 (no restriction on rank of A0).

• Other results show this is boundedly near µ(x̄).

• And other differential results show any estimate
must be of this form.
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Evaluating the Estimate µ̃(x̄)
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Calculate Estimate Given A0 = QR 50

If a matrix K has full column rank, then the
orthogonal projection into col(K) satisfies

‖PKv‖2 =
∥∥∥[

(KtK)−1/2Kt
]
v

∥∥∥
2

Notice that µ̃(x̄) = ‖PKv‖2 for the choices

K =

 A0

‖r̄‖2

‖x̄‖2
I

 and v =
1

‖x̄‖2

 r̄

0





Calculate Estimate Given A0 = QR 51

Since A0 = QR is available, use

K′ =


R

0
‖r̄‖2

‖x̄‖2
I

 and v′ =
1

‖x̄‖2


Qtr̄

. . .

0


The zero rows can be discarded, leaving

K′′ =

 R
‖r̄‖2

‖x̄‖2
I

 and v′′ =
1

‖x̄‖2

 Qtr̄

0





Calculate Given A0 = QR, cont. 52

It is easy to factor K′′ = QKRK using plane
rotations [Karlson and Waldén, 97].

µ̃(x̄) = ‖PKv‖2 = ‖PK′′v′′‖2 =
‖Qt

K′′ Qt
A r̄ ‖2

‖x̄‖2

solve LLS by Householder QR 2mn2

form Qt
Ar̄ 4mn

apply Qt
K′′ to Qt

A r̄ 8
3
n3

finish evaluating µ̃(x̄) 2n



Histograms of Ratio µ̃(x̄)/µ(x̄) 53
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Relative Forward and Backward Errors 54
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Uses for Minimal Size of Backward Errors 55

1. Accuracy criterion. [von Neumann, 47]
If the initial data have error ≥ µ(x̄),
then x̄ solves the problem,
to the extent the problem is known.

2. Backward stability estimation.
An x̄ with a small µ(x̄) is backward
stable.

3. Test new algorithms.
Explore backward stability without having
to do an inverse rounding error analysis.
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Conclusions 57

1. Perturbation theory of metric projections
provides asymptotic estimates for
optimal backward errors.

2. The estimates can be applied to practical
problems such as linear least squares.

3. The estimates for LLS are inexpensive
and accurate, answering Stewart and
Wilkinson’s question.
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How to Use the 1st Estimate 66

Suppose a calculation (program)

1. has inputs (data) y0

2. has outputs (computed solution) x̄

3. is meant to solve equations h = F (y, x) = 0

Do this

1. form the Jacobian matrix, J, of F w.r.t. y

2. evaluate J and h at y = y0 and x = x̄

3. use QR or SVD to evaluate ‖J†h‖2 ∼ µ(x̄)



Example of Using the 1st Estimate 67

Saddle point problem A Bt

B C

  x1

x2

 =

 b1

b2


Want backward error to honor the structure

• not separate perturbations to B and Bt

• not perturbations to zeroes in A, B, C



Example Where the 1st Estimate is Useful 68

Saddle point problem

F (y0, x̄) =

 A Bt

B C

  x̄1

x̄2

 −

 b1

b2


Want backward error to honor the structure

• inputs y0 = (entries of A, B, C, b1, b2)

• outputs x̄ = (x̄1, x̄2)

• J =


